Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38727367

RESUMEN

Citrate-coated electrostatically stabilized very small superparamagnetic iron oxide particles (VSOPs) have been successfully tested as magnetic resonance angiography (MRA) contrast agents and are promising tools for molecular imaging of atherosclerosis. Their repeated use in the background of pre-existing hyperlipidemia and atherosclerosis has not yet been studied. This study aimed to investigate the effect of multiple intravenous injections of VSOPs in atherosclerotic mice. Taurine-formulated VSOPs (VSOP-T) were repeatedly intravenously injected at 100 µmol Fe/kg in apolipoprotein E-deficient (ApoE KO) mice with diet-induced atherosclerosis. Angiographic imaging was carried out by in vivo MRI. Magnetic particle spectrometry was used to detect tissue VSOP content, and tissue iron content was quantified photometrically. Pathological changes in organs, atherosclerotic plaque development, and expression of hepatic iron-related proteins were evaluated. VSOP-T enabled the angiographic imaging of heart and blood vessels with a blood half-life of one hour. Repeated intravenous injection led to VSOP deposition and iron accumulation in the liver and spleen without affecting liver and spleen pathology, expression of hepatic iron metabolism proteins, serum lipids, or atherosclerotic lesion formation. Repeated injections of VSOP-T doses sufficient for MRA analyses had no significant effects on plaque burden, steatohepatitis, and iron homeostasis in atherosclerotic mice. These findings underscore the safety of VSOP-T and support its further development as a contrast agent and molecular imaging tool.

2.
Vet Pathol ; 61(1): 62-73, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37431864

RESUMEN

Borna disease is a progressive meningoencephalitis caused by spillover of the Borna disease virus 1 (BoDV-1) to horses and sheep and has gained attention due to its zoonotic potential. New World camelids are also highly susceptible to the disease; however, a comprehensive description of the pathological lesions and viral distribution is lacking for these hosts. Here, the authors describe the distribution and severity of inflammatory lesions in alpacas (n = 6) naturally affected by this disease in comparison to horses (n = 8) as known spillover hosts. In addition, the tissue and cellular distribution of the BoDV-1 was determined via immunohistochemistry and immunofluorescence. A predominant lymphocytic meningoencephalitis was diagnosed in all animals with differences regarding the severity of lesions. Alpacas and horses with a shorter disease duration showed more prominent lesions in the cerebrum and at the transition of the nervous to the glandular part of the pituitary gland, as compared to animals with longer disease progression. In both species, viral antigen was almost exclusively restricted to cells of the central and peripheral nervous systems, with the notable exception of virus-infected glandular cells of the Pars intermedia of the pituitary gland. Alpacas likely represent dead-end hosts similar to horses and other spillover hosts of BoDV-1.


Asunto(s)
Enfermedad de Borna , Virus de la Enfermedad de Borna , Camélidos del Nuevo Mundo , Enfermedades de los Caballos , Meningoencefalitis , Enfermedades de las Ovejas , Animales , Caballos , Ovinos , Virus de la Enfermedad de Borna/genética , Enfermedad de Borna/patología , Meningoencefalitis/veterinaria , Antígenos Virales
3.
Nat Commun ; 14(1): 624, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739288

RESUMEN

'Staggering disease' is a neurological disease entity considered a threat to European domestic cats (Felis catus) for almost five decades. However, its aetiology has remained obscure. Rustrela virus (RusV), a relative of rubella virus, has recently been shown to be associated with encephalitis in a broad range of mammalian hosts. Here, we report the detection of RusV RNA and antigen by metagenomic sequencing, RT-qPCR, in-situ hybridization and immunohistochemistry in brain tissues of 27 out of 29 cats with non-suppurative meningoencephalomyelitis and clinical signs compatible with'staggering disease' from Sweden, Austria, and Germany, but not in non-affected control cats. Screening of possible reservoir hosts in Sweden revealed RusV infection in wood mice (Apodemus sylvaticus). Our work indicates that RusV is the long-sought cause of feline 'staggering disease'. Given its reported broad host spectrum and considerable geographic range, RusV may be the aetiological agent of neuropathologies in further mammals, possibly even including humans.


Asunto(s)
Encefalomielitis , Humanos , Animales , Gatos , Ratones , Causalidad , Suecia , Austria , Alemania , Mamíferos
4.
PeerJ ; 10: e14202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389428

RESUMEN

Recent studies have revealed the dynamic and complex evolution of CLCA1 gene homologues in and between mammals and birds with a particularly high diversity in mammals. In contrast, CLCA2 has only been found as a single copy gene in mammals, to date. Furthermore, CLCA2 has only been investigated in few mammalian species but not in birds. Here, we established core genomic, protein biochemical and expressional properties of CLCA2 in several bird species and compared them with mammalian CLCA2. Chicken, turkey, quail and ostrich CLCA2 were compared to their mammalian orthologues using in silico, biochemical and expressional analyses. CLCA2 was found highly conserved not only at the level of genomic and exon architecture but also in terms of the canonical CLCA2 protein domain organization. The putatively prototypical galline CLCA2 (gCLCA2) was cloned and immunoblotting as well as immunofluorescence analyses of heterologously expressed gCLCA2 revealed protein cleavage, glycosylation patterns and anchoring in the plasma membrane similar to those of most mammalian CLCA2 orthologues. Immunohistochemistry found highly conserved CLCA2 expression in epidermal keratinocytes in all birds and mammals investigated. Our results suggest a highly conserved and likely evolutionarily indispensable role of CLCA2 in keratinocyte function. Its high degree of conservation on the genomic, biochemical and expressional levels stands in contrast to the dynamic structural complexities and proposed functional diversifications between mammalian and avian CLCA1 homologues, insinuating a significant degree of negative selection of CLCA2 orthologues among birds and mammals. Finally, and again in contrast to CLCA1, the high conservation of CLCA2 makes it a strong candidate for studying basic properties of the functionally still widely unresolved CLCA gene family.


Asunto(s)
Pollos , Mamíferos , Animales , Mamíferos/genética , Pollos/genética , Codorniz/genética , Genómica , Pavos/genética
5.
Transbound Emerg Dis ; 69(6): 4016-4021, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36135593

RESUMEN

The rustrela virus (RusV) was recently described as a novel pathogen in a circumscribed area of northern Germany close to the Baltic Sea. Up to now, the virus has been detected in cases of fatal non-suppurative meningoencephalitis in zoo animals of different species and a single wild carnivore as well as in apparently healthy yellow-necked field mice (Apodemus flavicollis). Data regarding the background of this previously undiscovered pathogen, including clinical presentation of the disease, host range and distribution of the virus, are still limited. Here, three euthanized red-necked wallabies (Macropus rufogriseus) from zoos of different areas in northeastern Germany were submitted for necropsy after presenting with apathy and therapeutically unresponsive neurological signs. A moderate to severe, non-suppurative meningoencephalitis was diagnosed in all three cases. RusV was consistently detected via RT-qPCR and RNA in situ hybridization in the brains of all wallabies. Other commonly known neuropathogens could not be detected.


Asunto(s)
Enfermedades de los Roedores , Virosis , Ratones , Animales , Macropodidae , Animales de Zoológico , Virosis/veterinaria , Alemania
6.
J Control Release ; 349: 917-928, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35905785

RESUMEN

Two challenges in topical drug delivery to the skin include solubilizing hydrophobic drugs in water-based formulations and increasing drug penetration into the skin. Polymeric core-multishell nanocarrier (CMS), particularly the novel biodegradable CMS (bCMS = hPG-PCL1.1K-mPEG2k-CMS) have shown both advantages on excised skin ex vivo. Here, we investigated topical delivery of tacrolimus (TAC; > 500 g/mol) by bCMS in a hydrogel on an oxazolone-induced model of dermatitis in vivo. As expected, bCMS successfully delivered TAC into the skin. However, in vivo they did not increase, but decrease TAC penetration through the stratum corneum compared to ointment. Differences in the resulting mean concentrations were mostly non-significant in the skin (epidermis: 35.7 ± 20.9 ng/cm2 for bCMS vs. 92.6 ± 62.7 ng/cm2 for ointment; dermis: 76.8 ± 26.8 ng/cm2vs 118.2 ± 50.4 ng/cm2), but highly significant in blood (plasma: 1.1 ± 0.4 ng/ml vs 11.3 ± 9.3 ng/ml; erythrocytes: 0.5 ± 0.2 ng/ml vs 3.4 ± 2.4 ng/ml) and liver (0.01 ± 0.01 ng/mg vs 0.03 ± 0.01 ng/mg). bCMS were detected in the stratum corneum but not in viable skin or beyond. The therapeutic efficacy of TAC delivered by bCMS was equivalent to that of standard TAC ointment. Our results suggest that bCMS may be a promising carrier for the topical delivery of TAC. The quantitative difference to previous results should be interpreted in light of structural differences between murine and human skin, but highlights the need as well as potential methods to develop more a complex ex vivo analysis on human skin to ensure quantitative predictive value.


Asunto(s)
Dermatitis , Tacrolimus , Administración Cutánea , Animales , Dermatitis/metabolismo , Portadores de Fármacos/química , Humanos , Hidrogeles/metabolismo , Ratones , Pomadas , Oxazolona/metabolismo , Piel/metabolismo , Absorción Cutánea , Tacrolimus/uso terapéutico , Agua/metabolismo
7.
Animals (Basel) ; 12(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35883332

RESUMEN

In rhinoceroses, lameness is an occasionally seen symptom primarily caused by lesions affecting the feet and interdigital space. A 3-year-old male Greater one-horned rhinoceros developed a progressive, severe movement disorder of the right hind limb with subsequent death. The pathological analysis diagnosed a severe, retroperitoneal abscess and chronic thrombosis of the right iliac artery. Streptococci detected in the abscess were further identified as Streptococcus dysgalactiae subspecies equisimilis by culture and molecular techniques. The identical isolate was also identified in a vaginal swab of the dam. The list of differential diagnoses for lameness in rhinoceroses must be expanded by processes affecting other than the extremities per se.

8.
PLoS One ; 17(4): e0266937, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35417490

RESUMEN

Species-specific diversities are particular features of mammalian chloride channel regulator, calcium activated (CLCA) genes. In contrast to four complex gene clusters in mammals, only two CLCA genes appear to exist in chickens. CLCA2 is conserved in both, while only the galline CLCA1 (gCLCA1) displays close genetic distance to mammalian clusters 1, 3 and 4. In this study, sequence analyses and biochemical characterizations revealed that gCLCA1 as a putative avian prototype shares common protein domains and processing features with all mammalian CLCA homologues. It has a transmembrane (TM) domain in the carboxy terminal region and its mRNA and protein were detected in the alimentary canal, where the protein was localized in the apical membrane of enterocytes, similar to CLCA4. Both mammals and birds seem to have at least one TM domain containing CLCA protein with complex glycosylation in the apical membrane of enterocytes. However, some characteristic features of mammalian CLCA1 and 3 including entire protein secretion and expression in cell types other than enterocytes seem to be dispensable for chicken. Phylogenetic analyses including twelve bird species revealed that avian CLCA1 and mammalian CLCA3 form clades separate from a major branch containing mammalian CLCA1 and 4. Overall, our data suggest that gCLCA1 and mammalian CLCA clusters 1, 3 and 4 stem from a common ancestor which underwent complex gene diversification in mammals but not in birds.


Asunto(s)
Pollos , Canales de Cloruro , Animales , Membrana Celular/metabolismo , Pollos/genética , Pollos/metabolismo , Canales de Cloruro/metabolismo , Enterocitos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Filogenia , Dominios Proteicos
9.
Transbound Emerg Dis ; 67(5): 2093-2107, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32223069

RESUMEN

Borna disease virus 1 (BoDV-1) is the causative agent of Borna disease, an often fatal neurologic condition of domestic mammals, including New World camelids, in endemic areas in Central Europe. Recently, BoDV-1 gained further attention by the confirmation of fatal zoonotic infections in humans. Although Borna disease and BoDV-1 have been described already over the past decades, comprehensive reports of Borna disease outbreaks in domestic animals employing state-of-the-art diagnostic methods are missing. Here, we report a series of BoDV-1 infections in a herd of 27 alpacas (Vicugna pacos) in the federal state of Brandenburg, Germany, which resulted in eleven fatalities (41%) within ten months. Clinical courses ranged from sudden death without previous clinical signs to acute or chronic neurologic disease with death occurring after up to six months. All animals that underwent necropsy exhibited a non-suppurative encephalitis. In addition, six apparently healthy seropositive individuals were identified within the herd, suggesting subclinical BoDV-1 infections. In infected animals, BoDV-1 RNA and antigen were mainly restricted to the central nervous system and the eye, and sporadically detectable in large peripheral nerves and neuronal structures in other tissues. Pest control measures on the farm resulted in the collection of a BoDV-1-positive bicoloured white-toothed shrew (Crocidura leucodon), while all other trapped small mammals were negative. A phylogeographic analysis of BoDV-1 sequences from the alpacas, the shrew and BoDV-1-positive equine cases from the same region in Brandenburg revealed a previously unreported endemic area of BoDV-1 cluster 4 in North-Western Brandenburg. In conclusion, alpacas appear to be highly susceptible to BoDV-1 infection and display a highly variable clinical picture ranging from peracute death to subclinical forms. In addition to horses and sheep, they can serve as sensitive sentinels used for the identification of endemic areas.

10.
Anal Chem ; 91(11): 7208-7214, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31090401

RESUMEN

Research on topical drug delivery relies on reconstructed human skin (RHS) in addition to ex vivo human and animal skin, each with specific physiological features. Here, we compared the penetration of dexamethasone from an ethanolic hydroxyethyl cellulose gel into ex vivo human skin, murine skin, and RHS. For comprehensive insights into skin morphology and penetration enhancing mechanisms, scanning transmission X-ray microscopy (STXM), liquid chromatography tandem-mass spectrometry (LC-MS/MS), and stimulated Raman spectromicroscopy (SRS) were combined. STXM offers high spatial resolution with label-free drug detection and is therefore sensitive to tissue damage. Despite differences in sample preparation and data analysis, the amounts of dexamethasone in RHS, detected and quantified by STXM and LC-MS/MS, were very similar and increased during the first 100 min of exposure. SRS revealed interactions between the gel and the stratum corneum or, more specifically, its protein and lipid structures. Similar to both types of ex vivo skin, higher protein-to-lipid ratios within the stratum corneum of RHS indicated reduced lipid amounts after 30 min of ethanol exposure. Extended ethanol exposure led to a continued reduction of lipids in the ex vivo matrixes, while protein integrity appeared to be compromised in RHS, which led to declining protein signals. In conclusion, LC-MS/MS proved the predictive capability of STXM for label-free drug detection. Combining STXM with SRS precisely dissected the penetration enhancing effects of ethanol. Further studies on topical drug delivery should consider the potential of these complementary techniques.


Asunto(s)
Dexametasona/análisis , Piel/química , Administración Cutánea , Animales , Celulosa/química , Cromatografía Liquida , Dexametasona/administración & dosificación , Dexametasona/farmacocinética , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Geles/química , Humanos , Ratones , Piel/metabolismo , Absorción Cutánea , Espectrometría Raman , Espectrometría de Masas en Tándem , Rayos X
11.
Free Radic Biol Med ; 131: 299-308, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576782

RESUMEN

Sun radiation is indispensable to our health, however, a long term and high exposure could lead to erythema, premature skin aging and promotion of skin tumors. An underlying pathomechanism is the formation of free radicals. First, reactive oxygen species (*OH, *O2-) and then, secondary lipid oxygen species (C centered radicals, CCR) are formed. A high amount of free radicals results in oxidative stress with subsequent cell damage. In dermatological research different skin models are used, however, comparative data about the cutaneous radical formation are missing. In this study, the radical formation in porcine-, (SKH-1) murine-, human- ex vivo skin and reconstructed human skin (RHS) were investigated during simulated sun irradiation (305-2200 nm), with X-band EPR spectroscopy. The amount of radical formation was investigated with the spin probe PCA exposed to a moderate sun dose below one minimal erythema dose (MED, ~25 mJ/cm2 UVB) in all skin models. Furthermore, the *OH and *CCR radical concentrations were measured with the spin trap DMPO within 0-4 MED (porcine-, human skin and RHS). The highest amount of radicals was found in RHS followed by murine and porcine, and the lowest amount in human ex vivo skin. In all skin models, more *OH than CCR radicals were found at 0-4 MED. Additionally, this work addresses the limitations in the characterization with the spin trap DMPO. The measurements have shown that the most comparable skin model to in vivo human skin could differ depending on the focus of the investigation. If the amount of radial production is regarded, RHS seems to be in a similar range like in vivo human skin. If the investigation is focused on the radical type, porcine skin is most comparable to ex vivo human skin, at an irradiation dose not exceeding 1 MED. Here, no comparison to in vivo human skin is possible.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Radicales Libres/análisis , Imagenología Tridimensional/estadística & datos numéricos , Piel/efectos de la radiación , Luz Solar/efectos adversos , Rayos Ultravioleta/efectos adversos , Animales , Óxidos N-Cíclicos , Relación Dosis-Respuesta en la Radiación , Radicales Libres/química , Humanos , Ratones , Modelos Biológicos , Estrés Oxidativo , Oxígeno/química , Radiometría , Marcadores de Spin , Porcinos , Técnicas de Cultivo de Tejidos
12.
Vet Pathol ; 55(6): 896-899, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30071802

RESUMEN

Contaminated honey is a common cause of grayanotoxin intoxication in humans. Intoxication of animals, especially cattle, is usually due to ingestion of plants of the Ericaceae family, such as Rhododendron. Here, we report the ingestion of Pieris japonica as the cause of grayanotoxin I intoxication in 2 miniature pigs that were kept as pets. The pigs showed sudden onset of pale oral mucosa, tachycardia, tachypnea, hypersalivation, tremor, and ataxia that progressed to lateral recumbency. The pathological examination of one pig revealed no specific indications for intoxication except for the finding of plant material of Pieris japonica in the intestine. Grayanotoxin I was identified in the ingested plant, gastric content, blood, liver, bile, kidney, urine, lung, and skeletal muscle via HPLC-MS/MS. Grayanotoxin I should be considered as a differential etiological diagnosis in pigs with unspecific signs and discovery of ingested plant material as the only indication in the pathologic examination.


Asunto(s)
Diterpenos/envenenamiento , Ericaceae/envenenamiento , Intoxicación por Plantas/veterinaria , Enfermedades de los Porcinos/etiología , Porcinos Enanos , Animales , Diterpenos/análisis , Femenino , Masculino , Intoxicación por Plantas/etiología , Porcinos
13.
Small ; 14(23): e1800310, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29726099

RESUMEN

Nanoparticles hold a great promise in biomedical science. However, due to their unique physical and chemical properties they can lead to overproduction of intracellular reactive oxygen species (ROS). As an important mechanism of nanotoxicity, there is a great need for sensitive and high-throughput adaptable single-cell ROS detection methods. Here, fluorescence lifetime imaging microscopy (FLIM) is employed for single-cell ROS detection (FLIM-ROX) providing increased sensitivity and enabling high-throughput analysis in fixed and live cells. FLIM-ROX owes its sensitivity to the discrimination of autofluorescence from the unique fluorescence lifetime of the ROS reporter dye. The effect of subcytotoxic amounts of cationic gold nanoparticles in J774A.1 cells and primary human macrophages on ROS generation is investigated. FLIM-ROX measures very low ROS levels upon gold nanoparticle exposure, which is undetectable by the conventional method. It is demonstrated that cellular morphology changes, elevated senescence, and DNA damage link the resulting low-level oxidative stress to cellular adverse effects and thus nanotoxicity. Multiphoton FLIM-ROX enables the quantification of spatial ROS distribution in vivo, which is shown for skin tissue as a target for nanoparticle exposure. Thus, this innovative method allows identifying of low-level ROS in vitro and in vivo and, subsequently, promotes understanding of ROS-associated nanotoxicity.


Asunto(s)
Nanopartículas del Metal/toxicidad , Nanopartículas/toxicidad , Imagen Óptica/métodos , Estrés Oxidativo/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , ADN/metabolismo , Oro/toxicidad , Células HeLa , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo
14.
Histochem Cell Biol ; 149(6): 619-633, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29610986

RESUMEN

The secreted airway mucus cell protein chloride channel regulator, calcium-activated 1, CLCA1, plays a role in inflammatory respiratory diseases via as yet unidentified pathways. For example, deficiency of CLCA1 in a mouse model of acute pneumonia resulted in reduced cytokine expression with less leukocyte recruitment and the human CLCA1 was shown to be capable of activating macrophages in vitro. Translation of experimental data between human and mouse models has proven problematic due to several CLCA species-specific differences. We therefore characterized activation of macrophages by CLCA1 in detail in solely murine ex vivo and in vitro models. Only alveolar but not bone marrow-derived macrophages freshly isolated from C57BL6/J mice increased their expression levels of several pro-inflammatory and leukotactic cytokines upon CLCA1 stimulation. Among the most strongly regulated genes, we identified the host-protective and immunomodulatory airway mucus component BPIFA1, previously unknown to be expressed by airway macrophages. Furthermore, evidence from an in vivo Staphylococcus aureus pneumonia mouse model suggests that CLCA1 may also modify BPIFA1 expression in airway epithelial cells. Our data underscore and specify the role of mouse CLCA1 in inflammatory airway disease to activate airway macrophages. In addition to its ability to upregulate cytokine expression which explains previous observations in the Clca1-deficient S. aureus pneumonia mouse model, modulation of BPIFA1 expression expands the role of CLCA1 in airway disease to involvement in more complex downstream pathways, possibly including liquid homeostasis, airway protection, and antimicrobial defense.


Asunto(s)
Células de la Médula Ósea/metabolismo , Canales de Cloruro/metabolismo , Citocinas/genética , Glicoproteínas/genética , Leucocitos/metabolismo , Macrófagos Alveolares/metabolismo , Fosfoproteínas/genética , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Células Cultivadas , Canales de Cloruro/deficiencia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Glicoproteínas/metabolismo , Leucocitos/patología , Macrófagos Alveolares/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/metabolismo , Solubilidad
15.
Biomaterials ; 162: 60-70, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29438881

RESUMEN

Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Piel/citología , Línea Celular , Supervivencia Celular , Ensayo Cometa , Citometría de Flujo , Humanos , Células de Langerhans/metabolismo , Microscopía Fluorescente , Especies Reactivas de Oxígeno/metabolismo
16.
Toxins (Basel) ; 10(2)2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29385106

RESUMEN

In May 2017, at least 12 dogs showed signs of acute neurotoxicosis after swimming in or drinking from Lake Tegel, a mesotrophic lake in Berlin, Germany, and several of the affected dogs died shortly afterwards despite intensive veterinary treatment. Cyanobacterial blooms were not visible at the water surface or the shorelines. However, detached and floating water moss (Fontinalis antipyretica) with high amounts of Tychonema sp., a potential anatoxin-a (ATX) producing cyanobacterium, was found near the beaches where the dogs had been swimming and playing. Necropsies of two of the dogs revealed no specific lesions beside the anamnestic neurotoxicosis. ATX was detected in concentrations up to 8700 µg L-1 in the stomach contents, while other (neuro)toxic substances were not found. In the aqueous fraction of Fontinalis/Tychonema clumps sampled after the casualties, ATX was found in concentrations up to 1870 µg L-1. This is the first report of a dense population of Tychonema sp. in stands of Fontinalis resulting in high ATX contents. This case emphasizes the need for further investigation of potentially toxic, non-bloom forming cyanobacteria in less eutrophic water bodies and underlines the novel challenge of developing appropriate surveillance schemes for respective bathing sites.


Asunto(s)
Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/veterinaria , Tropanos/toxicidad , Contaminantes del Agua/toxicidad , Animales , Berlin , Cianobacterias , Toxinas de Cianobacterias , Perros , Resultado Fatal , Femenino , Lagos
17.
PLoS One ; 13(1): e0191512, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29346439

RESUMEN

Members of the chloride channel regulators, calcium-activated (CLCA) family, have been implicated in diverse biomedical conditions, including chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, the activation of macrophages, and the growth and metastatic spread of tumor cells. Several observations, however, could not be repeated across species boundaries and increasing evidence suggests that select CLCA genes are particularly prone to dynamic species-specific evolvements. Here, we systematically characterized structural and expressional differences of the CLCA3 gene across mammalian species, revealing a spectrum of gene duplications, e.g., in mice and cows, and of gene silencing via diverse chromosomal modifications in pigs and many primates, including humans. In contrast, expression of a canonical CLCA3 protein from a single functional gene seems to be evolutionarily retained in carnivores, rabbits, guinea pigs, and horses. As an accepted asthma model, we chose the cat to establish the tissue and cellular expression pattern of the CLCA3 protein which was primarily found in mucin-producing cells of the respiratory tract and in stratified epithelia of the esophagus. Our results suggest that, among developmental differences in other CLCA genes, the CLCA3 gene possesses a particularly high dynamic evolutionary diversity with pivotal consequences for humans and other primates that seem to lack a CLCA3 protein. Our data also help to explain previous contradictory results on CLCA3 obtained from different species and warrant caution in extrapolating data from animal models in conditions where CLCA3 may be involved.


Asunto(s)
Canales de Cloruro/fisiología , Animales , Canales de Cloruro/clasificación , Evolución Molecular , Familia de Multigenes , Filogenia , Enfermedades Respiratorias/genética , Especificidad de la Especie
19.
Nanoscale Res Lett ; 12(1): 64, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28116609

RESUMEN

Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e.g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment.Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection.Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis.Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.

20.
Nanomedicine ; 13(1): 317-327, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27697619

RESUMEN

Inflammatory disorders of the skin pose particular therapeutic challenges due to complex structural and functional alterations of the skin barrier. Penetration of several anti-inflammatory drugs is particularly problematic in psoriasis, a common dermatitis condition with epidermal hyperplasia and hyperkeratosis. Here, we tested in vivo dermal penetration and biological effects of dendritic core-multishell-nanocarriers (CMS) in a murine skin model of psoriasis and compared it to healthy skin. In both groups, CMS exclusively localized to the stratum corneum of the epidermis with only very sporadic uptake by Langerhans cells. Furthermore, penetration into the viable epidermis of nile red as a model for lipophilic compounds was enhanced by CMS. CMS proved fully biocompatible in several in vitro assays and on normal and psoriatic mouse skin. The observations support the concept of CMS as promising candidates for drug delivery in inflammatory hyperkeratotic skin disorders in vivo.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Psoriasis/tratamiento farmacológico , Absorción Cutánea , Administración Cutánea , Animales , Materiales Biocompatibles/química , Células Cultivadas , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Humanos , Queratinocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...